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When a binary alloy is directionally solidified, a two-phase mushy dendritic zone is 
often formed. Interdendritic convection of the melt may occur, and is coupled with 
compositional convection of the residual melt. If fluid flow velocities are high enough, 
local melt-back of the dendrites may occur, leading to channel formation, and thus 
preferred flow paths. In order to predict the onset of convection, a coupled 
liquid/mush model is proposed, which includes most of the known physics. An 
elaborate scaling procedure leads to certain conclusions concerning the nature of 
convection, and points to a much simplified model, which can essentially be solved 
analytically. Predictions of the theory are compared quantitatively with experiments. 

1. Introduction 
The solidification of multi-component fluids is complicated by their typical phase 

diagrams, which shows that such mixtures do not have a single temperature at which 
a change of phase occurs. Rather, there is a soZidus curve (relating temperature to 
composition) above which solid begins to melt, and a higher liquidus curve, below 
which liquid begins to freeze. A common phase diagram is portrayed in figure 1, which 
is appropriate for many binary allows, and the caption to the figure describes the 
features of the diagram in further detail. The thermodynamics of the situation is 
described by Flemings (1974), for example. One consequence of phase diagrams, such 
as that in figure 1, is that as an alloy solidifies, there is rejection of one or other of the 
components into the melt. For example, a solidifying interface freezing a mixture of A 
and B will typically solidify either A or B (unless the temperature is eutectic, see figure 
l), so that the other component will be rejected. An example is the freezing of brine, 
wherein pure ice is formed, and excess salt is rejected into the liquid (this is why sea ice 
is fresh): here the (solid) components are ice and salt. It is evident that if there is a 
density difference between the two components, then the freezing will act as a buoyancy 
source or sink, depending on the direction of freezing. Thus compositional convection 
is likely to occur or, since temperature is also involved, some form of double-diffusive 
convection (Huppert 1990). 

A further consequence of this rejection is that a compositional boundary layer builds 
up ahead of an advancing interface. Since it is typically the case that the Lewis number 
(Le = KJD = thermal diffusivity/solute diffusivity) is large, the temperature hardly 
changes through this boundary layer, and as a result, since the liquidus temperature 
depends on concentration, the compositional boundary layer is often supercooled. 
Although some degree of supercooling is necessary for crystal growth, too much 
renders an advancing planar interface unstable, and a branching dendritic mushy zone 
results, which separates solid from liquid (Flemings 1974). This mushy zone consists of 
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FIGURE 1. Schematic phase diagram for a binary alloy with components A and B. The liquidus curve 
is represented by PEQ, the eutectic point is E, and cm, T, are the initial composition and temperature 
of the alloy. The solidus curves are PR and QS. 

a porous maze of dendritic solid and residual interstitial liquid, and if the rejected 
liquid is lighter than the bulk liquid, compositional convection can take place both in 
the liquid and in the mush. 

The particular phenomenon we are concerned with here occurs when convection in 
the mush becomes too vigorous. In particular, if the liquid velocity exceeds the 
solidification rate, local re-melting of dendrites will occur, leading to increased 
convective flow (due to increased permeability) and the resultant formation of flow 
channels of liquid only. These channels then dictate the convective style of flow. 
Evidence of such channel formation can be observed in metal alloy castings, since in 
the final solidified form the channels solidify later and with a different composition 
than the surrounding mush. These ‘freckles’ cause problems in the metallurgical 
industries, and formed the initial motivation for the study of their formation (Flemings 
& Nereo 1967; McDonald & Hunt 1969, 1970; Mehrabian, Keane & Flemings 
1970a b ;  Copley et al. 1970; Szekely & Jassal 1978). They are seen in low-entropy 
materials, whose growth is non-faceted and thus properly dendritic (Woodruff 1973), 
such as metal alloys and a few non-metals, most notably ammonium chloride, which 
is a convenient material for experiment. 

The purpose of this paper is to establish a realistic scenario for the onset and 
development of convection and flow channels in dendritically solidifying binary alloys. 
The emphasis is on a quantitative understanding of the processes involved, with a view 
to specific prediction as to when they will occur. There have been a number of other 
models used to predict the flow patterns in situations of this type. Whereas these can 
be successful (Kou, Poirier & Flemings 1978; Szekely & Jassal 1978; Ridder, Kou & 
Mehrabian 1981 ; Fujii, Proctor & Flemings 1979; Maples & Poirier 1984; Thompson 
& Szekely 1988), they tend not to include all the physics in a rational way. Thus our 
intention is rather different : to avoid any arbitrary or unwarranted assumptions. In 
particular, convection in both liquid and mush will be included in the model, and its 
effects will be studied analytically rather than computationally. The crucial usefulness of 
this approach is that it may, in principle, help us to extrapolate the analysis to much 
larger-scale solidifying alloys ~ the Earth’s core and crystallizing magma chambers are 
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two possible examples (Jacobs 1953; Loper & Roberts 1978, 1980, 1981), although it 
should be emphasized that these systems (particularly the Earth’s core) may be far 
from eutectic, contrary to what is assumed herein. 

On the more formal and deductive side of an approach to this problem, there have 
been several recent efforts, both in model formulation and analysis. Principal amongst 
these is the paper by Hills, Loper & Roberts (1983), which provides a complete model 
for a mushy zone. Their motivation is also the solidification of the Earth’s core, and 
a more practical reduction of this model is given by Roberts & Loper (1983), seeking 
to understand the experiments by Copley et al. (1970) on NH4C1. Worster (1986), 
following earlier work by Huppert & Worster (1985), took a simpler approach, 
omitting considerations of convective flow but seeking to find realistic (similarity) 
solutions to laboratory experimental conditions. His results for growth rate showed 
good agreement with experiments on ice growing from aqueous sodium nitrate. Fowler 
(1985) extended Worster’s model to include convection (his model is also included in 
that of Hills et ul.), and studied the onset of convection at prescribed constant 
solidification rate. He was able to partly analyse the system, but only by parameterizing 
convection in the liquid in a kinematic (probably unrealistic) way. Worster (1992) has 
also extended his (1986) model to include the effects of fluid flow. He then performed 
a linear stability analysis on the coupled liquid/mush equations. Two modes of 
instability were found : a boundary-layer mode corresponding to finger-like convection, 
and a mushy-layer mode in which convection is initiated on a much larger lengthscale. 
When the mushy layer is sufficiently small, the former mode will occur first (as is 
usually observed), and so we will restrict our attention to this case. 

Volume-averaged equations for alloy solidification have been proposed by 
Beckermann & Viskanta (1988), Ganesan & Poirier (1990), and Ni & Beckermann 
(1991). The advantage of averaging is that one can see how the macroscopic and 
microscopic variables are related. The disadvantage is that a description of appropriate 
constitutive relations is difficult. Beckermann & Viskanta (1 988) described a volume- 
averaged model using the methods developed for studying multiphase regions. The 
equations were solved numerically for a vertical rectangular enclosure containing 
ammonium chloride solution being solidified from the side. However, their results 
show considerable disagreement with experimental data. An explicit derivation of the 
averaging technique has been presented by Ganesan & Poirier (1990). They derived 
mass and momentum equations for the mush, and considered Darcy’s law as an 
approximation to the momentum equation. Ni & Beckermann (1991) have derived in 
detail a two-phase model for transport phenomena during solidification. The model 
includes enthalpy, concentration and velocity variables for both the solid and liquid 
phases, and non-equilibrium effects are also incorporated. 

Recently Bennon & Incropera (19874 have formulated a continuum model based 
upon the principles of classical mixture theory. Their equations have the advantage of 
being valid in each phase (solid, mush, liquid). This makes them amenable to a 
numerical solution because there is no need to track, and pose boundary conditions on, 
the moving phase interfaces. Using the model, Neilson & Incropera (1991) were able 
to simulate numerically the induced fluid flow and channel development within the 
mush of an NH4CI . H,O model alloy. Their results appear to agree qualitatively with the 
experimental observations of Sample & Hellawell (1982, 1984). 

The solidification of a metal alloy cooled from the sides has been studied by Amberg 
(1991). The time-dependent equations were solved numerically up to the point of 
complete solidification. The macrosegregation (solute redistribution) was then 
calculated at various times throughout the solidification process. However, channel 
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segregation within the final solidified metal ingot was not discussed. Amberg & Homsy 
(1993) have recently analysed the nonlinear stability of Worster’s (1991) model, with 
a view to studying chimney formation in more detail. It was found that both subcritical 
and supercritical instabilities could occur depending on the values of the parameters. 

In this paper we will extend Worster’s (1986) analysis to include a more realistic 
account of convection in the liquid as well as that in the mush. We are thus led to a 
scaling analysis which seems in accord with many of the observations by Sample & 
Hellawell (1982, 1984), Sarazin & Hellawell (1988) and Tait & Jaupart (1992). In 
particular, our analysis is consistent with an initial phase when convection is absent, 
a second phase when finger-like convection can be seen in the liquid, before channels 
form, which heralds a third phase. The analysis of this third phase is beyond the present 
scope, but has been studied by Roberts & Loper (1983), and by Worster (1991). 

2. Mathematical model and non-dimensionalization 
Model equations describing convection in the porous dendritic mush have been 

given by Fowler (1985), Worster (1986), and Hills et al. (1983). We take them in the 
form 

p t + V . b u ] = O ,  (2.1 a) 

PI 

= 1 -r(l -x)’ (2.1 e) 

where p is density, c is liquid composition, x is liquid mass fraction, T is temperature, 
and u is the liquid flux (= x x liquid velocity). In addition, we assume that in the mush, 
thermodynamic equilibrium prevails, so that the average temperature is at the liquidus, 
which we suppose to be given by 

and that the partition coefficient is zero, so that the solid concentration is zero. 
The material derivative in (2.1) is defined by d/dt = a/at + u - V. The constants in 

(2.1) are L, the latent heat; c, and c,, the specific heats of solid and liquid; k,  and k,, 
the thermal conductivities; D, the solute diffusivity in the liquid (we assume it to be 
zero in the solid); I7, the permeability; p, the dynamic viscosity; p l ,  the liquid density; 
g is gravity, k a unit vector in the vertical z-direction, p, is the solid density, and r is 
defined by 

The coefficients aZ and PI are coefficients of thermal and compositional expansion; 
and c, are defined below. These equations represent conservation of mass, energy, 
solute, and liquid momentum (Darcy’s law). We suppose the solid is immobile. 

T = p r c ,  (2.2) 

r = c., -Pz>/P,. (2.3) 
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FIGURE 2. Schematic of a vertically solidifying alloy. 

Equations in the liquid and solid regions (x = 1 and x = 0) are more straightforward. 

v . u = o ,  (2.4a) 

In the liquid, we prescribe (anticipating the Boussinesq approximation) 

du 
PX = 

(2.4b, c) 

(2.4d) 

and in the solid = K ,  V2T, (2.5) 
where K, is the solid thermal diffusivity. Since we will be interested in the upwards 
growth of a solidifying alloy, we shall assume the geometry sketched in figure 2. 

There are two principal cases of interest. If the basal temperature is below eutectic 
(see figure l), then eutectic solid (x = 0) grows from the base, whereas if the basal 
temperature is above the eutectic, solid is of one component only, and complete 
freezing cannot occur. This is obviously of less interest metallurgically, although it is 
more easily done in laboratory experiments (on aqueous solutions, for example). 

We apply the following boundary conditions : 

(i) On the liquid-mush interface, z = z l :  

(2.6a, b) 

(2.6c, d )  

[c]' = 0, [p]' = 0, x = 1. (2.6 e-g) 

These represent respectively, conservation of mass, conservation of solute, ther- 
modynamic equilibrium, conservation of energy, solutal equilibrium, force balance, 
and lastly a condition representing continuity of liquid fraction. The merits of some of 
these conditions are discussed by Fowler (1985), Worster (1986), and Hills et al. (1983). 
' [  1"' represents a jump from z: to z;, and a subscript n means the normal component. 
V is the velocity of z l .  
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(ii) On the solid-mush interface, z = z,: 

V,[p]? = bun]?, c = cE (eutectic) (2.7 a, b) 

or ( 2 . 7 ~ )  

(2.7d, e)  

(iii) At the container base, z = 0: 

T = (for example). (2.8) 
The alternatives in (2.7b, c) arise depending on whether growth is eutectic or not. 
Notice that V,  = is in (2.7), but V, = i, in (2.6). We wish to solve (2.1), (2.2), (2.4), (2.5) 
with boundary conditions (2.6), (2.7), (2.8). We have not explicitly posed boundary 
conditions at the top surface of the liquid; we shall generally suppose 'far-field' 
conditions such as 

Conditions on p and u will not be needed explicitly. 
T+ T,, c-tc, as z-+co. (2.9) 

2.1. Non-dimensionalization 
We begin by non-dimensionalizing the problem. If d is a representative lengthscale for 
the system (e.g. the depth of the initial fluid), then a thermal velocity scale is V = K,/d, 
and we use this in scaling x and u. This is apparently inconsistent with far-field 
boundary conditions such as (2.9), but in fact we are more concerned with the depth 
of mush at the onset of convection, and this is typically a good deal smaller than d. 
Moreover, we shall find later that the relevant lengthscale in the liquid region is much 
less than d, which justifies the use of (2.9) a posteriori. 

denotes the liquidus 
temperature in the far field of the liquid, that is is the 
liquid superheat, while - TE is the mush temperature range, where TE is the eutectic 
temperature, & = - TcE, and cE is the eutectic composition. 

In order to make use of the possibility that the initial composition is close to the 
eutectic, we scale the composition with the difference cE-cm, taken as positive. Thus 
we define 

There are two natural temperature scales in the system. If 
= TO - Tc,, then T, - 

(2.10) i X = dx*, U = (~, /d)  u*, t = ( & / K , )  t*, 
p=pep*,  T =  c + ( c - T E ) T i k ,  c = c , + ( c ~ - c ~ ) c * ,  

P = P,-p~g~+CuK,/n,)P*,  n= &IT*, 
where I7, is a permeability scale, p m  is the ambient pressure, and p is the liquid 
viscosity. Substituting these into the governing equations and boundary conditions, we 
obtain the following, where we have dropped the asterisks. 

(a)  In the mush: 
T = - c ,  u = - l I ( x ) [ V p - R ~ k ] ,  (2.11 a, b) 

p = [ l - r ( l -x )] - ' ,  pt+v.bu] = 0,  (2.1 1 c,  d )  

P (2.11e) 
d 

P [xu  + Pc>l+ v * M I -  x) ( 1  +Pc) UI = 5 v lox VCI, 
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where 

(2.12) 

is the density difference between the far-field liquidus density and that of the eutectic 
liquid. The parameters are Le, the Lewis number, R, a Rayleigh number, and S, related 
to the Stefan number. 

(b) In the liquid: 
v . u = o ,  (2.144 

dc 1 
= -v2c, d T  

dt dt Le 
-=V2T ,  - 

du 
- - Op + yV2u + (R, T+ Rp C )  k ,  

where the Prandtl number is 
= PlIPl  K1, 

(2.14b, c) 

(2.144 

(2.15) 

thermal and compositional Rayleigh numbers are 

and the parameter y, given by 
y = %Id", (2.17) 

is a measure of the dendritic spacing, since if 1 is the dendrite spacing scale, then since 

(2.18) F, 
y < F / h .  

(Note that y-l = 2 as defined by Worster 1992.) 
(c) In the solid: 

K 
= "V'T. 

Kl  

The boundary conditions we apply are as follows: 

(i) In the liquid, as z -+ co : 
T-+A,, c+O, 

where A ,  = Tm-G 
G-- TE' 

(2.19) 

(2.20) 

(2.21) 

(ii) On the liquid-mush interface, z = z l :  

[c]' = 0, [PI? = 0, x = 1. (2.22 e-g) 
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(iii) On the solid-mush interface, z = z,: 

or 

I/,[p]' = [pu,]', c = 1, (eutectic) (2.23 a, b) 

(2.23 c)  

at the container base, T = A,,, 

where 

(2.24) 

(2.25) 

We now wish to solve (2.1 l), (2.14) and (2.19) subject to (2.20), (2.22), (2.23) and (2.24). 

3. Scaling the model 
We begin by estimating the orders of magnitude of the various dimensionless 

constants of the model, which are: p, S, Le, R, n, R,, R,, y, r,  A,, A, .  Obviously these 
will vary depending on the application, but we shall choose for illustration those 
appropriate to laboratory ammonium chloride experiments: see Chen & Chen (1991), 
Tait & Jaupart (1992), Sarazin & Hellawell (1988), Bennon & Incropera (19873), or 
Szekely & Jassel (1978), denoted CC, TJ, SH, BI and SJ respectively. We choose 

L - 3.14 x 10' kJ kg-l, C, - 3.25 kJ kg-l K-l (BI), 
r - 4 9 0 K  (TJ), 
K - 1.47 x cm2 s-l, D N 1.3 x cm2 s-l (SH), 

p; - 1.08 x lo3 kg mP3 (SJ), 
ps - 1.52 x lo3 kg m-3 (CC), 

pz 0.3 (BI), - 2 x 10-4 ~ - 1  (SJ), 
g - lo3 cm sP2, 
1 - lo-' cm (SJ), 

pz - 1.03 x gm cm-' s-l (SH), 
d - 10 cm. 

(3.1) 

We take cE = 0.8, TE = - 15 "C, and choose representative values c ,  = 0.75, 
= -50 "C, T, = 50 "C; we also take no = F/lOO - lop4 cm2; then 

V - 1.5 x lo-' cm s-l, = 9.5 "C, and 

B - 0.067, S - 0.25, R, - 0.5 x lo3, R, - 1.5 x lo3, 
(3.2) R = RB-R, - lo3, (+ - 10, y - lop6, r - 0.3, A ,  = -2.4, A ,  = 1.6.) 

3.1. Initial approximations 
The first (and least accurate) approximation we make is an extended Boussinesq 
approximation : 

thus we neglect solidification shrinkage, in the time-honoured tradition that the 
important density changes are those associated with buoyancy in the liquid. For some 

r = O ;  (3.3) 
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alloys (e.g. PbSn) (3.3) is quite accurate (r N 0.03). Actually, as we are soon to take 
1 -x as small, (3.3) will even be accurate for NH,C1 (in the sense that p M constant, if 
the composition is nearly eutectic). We further assume that Le is large, and put 

1/Le = 0, (3.4) 

in the mush (but not in the liquid); this has been shown to be a regular approximation 
by Fowler (1985). We assume the initial liquid composition is close to eutectic; 
specifically, we taken p 6 1, and rescale x by writing 

x = 1-p$h. (3.5) 

Neglecting terms of order p, Y and Le-l, the equations in the mush can now be 
simplified, yielding 

(3.6a, b)  

(3.6c, d) 

where we take I7 = 1 (usual forms for I7 have L!+ 1 as x+ 1, e.g. I7 K (1 -x)", 
m = 2 or 3). 

On z = z z :  

dc 
dt 

(1 +S)- = V2c, u = -Op+Rck, 

The corresponding reduced boundary conditions are as follows : 

$h = 0, [u,]t = 0, [p]' = 0, [c]' = 0, (3.7 u-d) 

Fl+ = 0, [TI: = 0, [El; = 0. 
an - 

(3.7 e-g) 

The last condition follows from (2.22b) with Le < co, since all the other terms are 
continuous across zz. It corresponds to a condition of marginal supercooling of the 
interface (cf. Worster 1986). 

On z = z,: (3.8 a-c) 

c = l  or KMO; (3.8d, e) 

the alternative in (3.8e) requires interpretation: it simply implies that when Le 9 1 
there is essentially no completely solid region; in that case z,  = 0, and we have T = A ,  
there also. 

At this point we must make an intelligent guess about how solutions to this coupled 
system will behave. This is based partly on observation (Sample & Hellawell 1984) and 
partly on previous analysis of the model (Fowler 1985). The mush equations are 
essentially those describing convection in a porous medium, whereas those in the liquid 
describe double-diffusive finger-type convection (Turner 1973). (We are here assuming 
that R,, Rg > 0, i.e. release of buoyant fluid when cooled from below.) One cannot 
occur without the other since convection in one necessitates a horizontal compositional 
gradient at zz, which would drive convection in the other. However, because of the 
negligible resistance of the liquid (i.e. because y 6 l), the liquid convection will be 
vigorous even if the convection in the dendrites is marginal. Consequently, either 
turbulent convection, or at least 'high Rayleigh number' convection (with boundary 
layers) will ensue in the liquid. If turbulent, we would parameterize the fluxes (Turner 
1973); some of the experimental observations of Sample & Hellawell (1984) suggest 
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that convection in the liquid can be basically laminar, if time-dependent : vertical 
plumes of buoyant liquid wander about the liquid/mush interface. Insofar as the 
equations in the mush may be derived using averages in both time and space (Drew & 
Wood 1985), we can expect that such wandering plumes are consistent with a 'steady' 
flux from the mush, and that the spatial variation in this flux will control just how the 
plumes wander. 

3.2. Compositional convection 
We now wish to characterize the boundary-layer nature of the convection in the liquid. 
Suppose that there is a compositional boundary layer of thickness (36. Since the flux 
from the mush is ac/& - O( l), the change in c across the layer is c - O(Se). Let us 
suppose appropriate scales for t ,  x, u in the liquid are [t], e, [u]. By rescaling with these 
values, and c with (3e, we obtain the equations (putting r = 0) 

(3.10) 

where we have chosen [t] = e/ [u ] ,  and omitted the thermal buoyancy term. Now the 
boundary-layer analysis of Roberts (1977, 1979), cf. Proctor (1981), implies that we 
should choose 

P = 1  R Se3 
Les[u]' y[u] c Y ~ '  

(33 = __ (3.11a, b) 

The lateral lengthscale e is chosen consistently with the dynamics of finger-type 
convection. The exact solution of Stern (1975, chap. XI) and the more recent 
boundary-layer analysis of Howard & Veronis (1987) are both consistent with the idea 
that the width of the convective fingers is controlled by thermal diffusion, in the 
following sense. The flow in the fingers is controlled by compositional buoyancy. Since 
Le < 1, compositional variations occur over narrower regions than thermal variations. 
We can expect the temperature to vary across a finger (otherwise it is hardly a double- 
diffusive phenomenon) and we suppose that the finger width is such that the 
temperature variation is spread across each finger. A consequence of this is that 
thermal advection balances thermal conduction in the fingers, and the compositional 
variations occur across thinner boundary layers at the edges of fingers. Since T satisfies 

d T  1 
- = -V2T, 
dt e[u] 

(3.12) 

we therefore choose [u] = l/e. (3.13) 
It then follows that (3 = Le-f, [u] = (RB/Ley)i. (3.14a, b) 

If we take Le = lo2, y = lop6, Rp = lo3, then 

S - 0.2, [u] - 56, e - 0.017, p - y[uI2 - 0.003. (3.15) 

These estimates suggest fluid velocities in the fingers - [u] V - 0.8 cm s-', and 
finger widths - ed - 0.17 cm, and seem broadly consistent with observations. With 
p - y[u]' 4 1, c - s(3 4 1, [u] >> 1, then we have approximate boundary conditions for 
the mush: 

while at z = zs, u, = o ,  c =  1. (3.17a, b) 

p = 0, c = 0, $ = 0 at z l ,  (3.16 a-C) 
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The mush equations (3.6) with the boundary conditions in (3.16) and (3.17) are 
precisely the equations for convection in a porous medium, and the equation for q5 
uncouples. 

The lower boundary z, is determined by the Stefan condition for its normal velocity: 

(3.18) 

or V, % 0 if > TE. The final condition to determine zl follows from the flux 
conditions in (3.7), which in rescaled form, for each layer, can be written (with n = eN) 

(3.19 a-c) 

Equation (3.19b) gives the compositional flux condition for the liquid, and (3 .19~~)  
gives the extra condition, since we also have 

T =  0, u = 0 at 2:. (3.20) 

4. Asymptotic solution 
4.1. Boundary-layer description of convection in the liquid 

In the liquid, we have (with the smaller lengthscale - 6, timescale 2, velocity scale l/e, 
pressure scale y / 2 ,  and rescaling c with &) 

v * u = 0 ,  C , , + U  v c  = s3v2c, (4.1 a, b) 

1 du C 
-- - - -Vp+V2U+-kk, T , + u * V T =  V2T, 
CT dt’ S2 

(4.1 c, d )  

where t = 2t’,  together with 

(4.2 a-e) 

on z l ,  and T-tA,, c-0 as z+co. (4.3 a, b) 

The far-field condition on u might be taken as u-0 ,  on the basis that the finger cells 
merge. Lower down, a more appropriate condition for the boundary-layer solution 
may be that u + (0, w ( X ) )  where X is the horizontal coordinate. The free boundary is 
determined by the final condition, 

(4.4) 
aT 
-= sG at zl .  
aN 

The boundary-layer solution is modified from that of Roberts (1979), and is detailed 
in Appendix A. The temperature field uncouples from the compositional field 
providing thermal buoyancy is negligible (an unrealistic assumption), and the solution 
thus determines u as an O(1) function. Given this u, 

T , + u  * UT = V2T,  

T+A, as z + m ,  

we thus have to solve 

(4.5) 
(4.6a) 

ZZ , (4.6 b, c) 

where G = O(1). 



122 P. W. Emms and A .  C. Fowler 

The solution is as follows, and is detailed in Appendix B. Essentially the thermal 
profile in the liquid evolves on the slow conductive timescale t = e2t’, and is of the form 
of a conductive profile on the long mush lengthscale x = ex, modified by a small 
perturbation on the short lengthscale. Specifically, for X -  1 we put 

T =  e T , + e 2 T +  ..., (4.7) 

thus on a timescale t’ - 1, T,  relaxes to the solution of 

u .  V T ,  = V T , ,  (4.8 a) 

(4.8 b, c) 

where G is yet to be found. Note that then aT,lan = G on zl ,  and in fact this all we 
strictly require, as actually the compositional field in the mush will be similarly 
perturbed by a field ecl. 

In order to match to the far-field solution, put x = sX, t = e’t’, thus 

(4.9) 
1 

T + - u . V T = V 2 T ,  
€ 

with T+A, as z + m ,  (4 .10~)  

T =  0,  T,  = G on z = 0 (from matching), (4.10b, c) 

and where V = a/ax. Now the velocity u + (0, w(x/e) + v(x)) exponentially as z/e+ co, 
where v(x) is the (small) fluid velocity (from the mush) at zl, i.e. v = uIzT - k. By 
studying (4.9) using multiple scales, we show in Appendix B that T is described, to 
leading order, by the enhanced transport equation 

T+vT, = T,,+(l +Gv) T,,, (4.1 1) 

where v depends on the scale of the convective fingers. To summarize, we find that the 
effect of convection in the liquid can be parameterized by the enhanced vertical 
dispersion coefficient vG in (4.1 l), where, from Appendices A and B, G = aT/az and 
v = h4/315, h being the (scaled) finger width, h = O(1). Thus, typically, vG 4 1, and we 
will in fact henceforth neglect this term. 

4.2. Basic similarity solution, no convection in the mush 
In the absence of convection, our approximate model is given by (with z, = 0 and 
v = 0) 

sc, = c,, in 0 < z < zz,  (4 .12~)  

c = l  on z=O,  c = O  on z = z z ,  (4.12b, c) 

where s = 1 + S ;  = T,, in z > zl, (4 .13~)  

on z = zl. 
i3T ac T+A, as z+m, T=O on z = z z ,  -=-- 
a Z  az 

(4.13kd) 
In terms of similarity variables 

v 
6 y = 7 ,  

2t5 
(4.14) 
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a 

FIGURE 3. The variation of 01 with A ,  given by (4.16) for s = 1.25 (solid curve). The asymptotic 
relations for small and large A ,  are shown by the dashed and dotted curves respectively. 

the solutions are 

and the free boundary location a = z , /2t;  is determined by 

A ,  e-ae s; e-sa2 
- 

(4.15 a) 

(4.15 b)  

(4.16) 

Thus a depends on A ,  and s. Selecting values of L , c , , r  given in (3.1) and 
c, x cE = 0.8,  approximate to NH,Cl, then s = 1.25. In figure 3 we plot a = a(A,) for 
this value of s. In addition, the asymptotic relations obtained from (4.16) are shown. 
These are given by 

a-- for A ,  9 1 ,  (4.17) 
xi 

2 4 ,  

-log- for A ,  4 1 (: A y  (4.18) 

Worster (1986) has found a similarity solution for the equations with no convective 
flow in both the mush and the liquid regions. Since we have shown that the effect of 
convection in the liquid can be ignored, our solution is therefore an approximation to 
Worster's: hence it seems appropriate to compare the two solutions. If we denote 
Worster's variables with a superscript W then a suitable plot for comparison is hW 
against TY given in figure 8 of Worster (1986). These variables are related to a and A ,  
by 

(4.19a, b) 
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FIGURE 4. A comparison with the similarity solution given by Worster (1986). The dashed curve and 
the dotted curve are the mush/liquid and solid/mush interface positions derived by Worster. The 
solid curve shows our results. 

For an accurate comparison it is necessary to solve Worster's equations with physical 
data appropriate to NH,Cl . H 2 0 .  Consequently, we have used the scales in (3.1), and 
assumed the constants in the solid and liquid phases are equal. Using (4.19) with 
Tk = 9.5 "C, TE = - 15 'C, the results are shown in figure 4. The dashed and dotted 
curves, representing the mush/liquid and solid/mush interface positions respectively, 
are those derived by Worster. Our results (solid curve) compare favourably with his 
solution; we have supposed that the solid/mush interface is stationary, corresponding 
to /3 = 0 in (3.18). 

Since liquid convection is not initiated until after a finite time has elapsed, a 
similarity solution (including liquid convection) would only strictly be appropriate for 
times large compared to this onset time. However, this is irrelevant if v is ignored, and 
if v were not ignored, (4.1 1) only has the similarity solution as a limit as t+ co, in the 
sense that T =Ar) + O(l/t%). 

5. Linear stability 

we have to solve is 
We now return to the reduced model for convection in the mush. The full problem 

v . u = o ,  (5.1 a) 

u = -Vp+Rck,  (5.1 b) 

with 

and 
with 

dc 
dt 

s- = V2c for z < zl ,  

p = c = O  at z = z l ,  

u,=O, c = l  at z = O ,  

T + v T , = V 2 T  for z > z l ,  

v = u . k ,  T = O  at z = z l r  

(5.1 c) 

(5 .2~)  

(5.2b, c) 

(5.4a, b) 
(5.3) 

T + A ,  as z + c o ;  (5.44 
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and z1 is determined by 

The basic similarity solution is given in $4.  
Our aim is to find a critical value of R for the onset of convection. However, we need 

to decide what we mean by stability, since the basic state is time dependent. In this 
paper we limit ourselves to the concept of quasi-static stability, which is to say that we 
consider perturbations to the basic state thought of as ‘frozen’. In this case time 
appears as a parameter only, and ordinary linear stability theory can be applied. This 
has its drawbacks, since the amplitude of convection in a time-evolving system depends 
on the level of initial perturbation. Thus, while one can reasonably identify a time when 
small perturbations grow, their manifestation in experiment depends on initial 
conditions. As a consequence, we do not expect experimental repeatability. Further 
discussion appears in Emms (1993). 

Introducing the stream function II. via u = (- $ z ,  $,), we have for 0 < z < z1 

dc 
Vz$ = Rex, S- = V’C, 

dt 
(5.6a, b)  

and $ = O ,  c = l  on z = O ,  (5.7a, b)  

-- - 0 ,  c = O  on z = z I .  (5.7c, d )  
an 
a$ 

For z1 -= z < 00 

T + v T ,  = V’T, ( 5 . 8 )  

T + A ,  as z+co. (5.9c) 

subject to v =  $ x ,  T = O  on z = z l ,  (5.9a, b)  

The basic similarity solution is given by (4.15), that is 

(5 .10~)  

(5.10b) 

where a is given by (4.16), and z1 = 2ati. In the quasi-static stability analysis, we 
transform to time-varying coordinates 

(5 .11  a-c) 

but consider zl to be fixed. 
The linearized equations governing the onset of convection are then (dropping the 

asterisks) as z +  00 
T +  0 ;  (5.12) 

for 1 < z <  co T i- II., Iz-l  Toz = V 2 T ;  (5 .13)  

o n z = 1  @z = 0, T +  CT,, = C +  @,, = 0 ,  (5.14a, b) 

T,  + a,, = - (c,  + @ozz)  ; ( 5 . 1 4 ~ )  

5 F L M  262 
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f o r O < z <  1 Vz$ = R ,  c,, s[ct + $x cOz] = V'C; (5.15a, b) 

where 
erf(s;a:z) 

erfsia: 
c o = l -  (5.16a, b) 

and R, = z1 R .  Notice that R, is the ordinary mush Rayleigh number with the mush 
thickness taken as d. Here 5 = [(x, t )  is the perturbation to the liquid/mush interface. 

At the onset of convection, we assume ct = 0 (exchange of stability), and therefore 
the quasi-static criterion for the onset of convection is that 

Rm > R,, (5.17) 

where R, is the minimum value of R, at which the eigenvalue problem 

V2T = -$,~z=l T,, for z > 1, (5.1 8 a)  

for 0 < z <  1, 
Vz$ = R,  C, 

s$,coz = v2c 
(5.18b) 

T + A ,  as z + m ,  (5.18 c) 

on z =  1 ,  
V, = 0, T+[T, ,  = c+[c0,  = 0 

T,  + CT,,, = - (cz + C ~ O Z Z )  

(5.18d,e) 

(5.1 8f 1 
@ = c = O  on z = O  (5.18g) 

has a non-trivial solution. 

liquid equation (5.18a) can be directly integrated to give 
To solve this numerically, we write @, c and T i n  terms of normal modes eikx. The 

$( 1) A ,  ekz/4a2-kz 

T = A ePkz+ (erfa: (~-k/2a~)+e~~~erfca(z+k/2a:~) ) ,  (5.19) 
2k erfc a: 

where A is an arbitrary constant which determines the size of the eigenfunction. Thus, 
the following problem remains to be solved : 

(5.20 a, b) (D2-kz) $ = R, k2C, (D2-k2) c = -s@cOz, 

with boundary conditions 

c = - T ,  D$=O at z = l ,  

c = O ,  $ = O  at z = O ,  

where D = d/dz. The final boundary condition to be satisfied is written as a residual 

rb = Dc+DT+2a2(s- 1)c = 0 at z = 1. (5.21) 

The numerical procedure is then to integrate (5.20) for varying R ,  until rb = 0. This 
gives R, = R,(k ,d , , s )  so that the critical Rayleigh number R, = minkR,. 

It we denote the dimensional mush thickness as I,, the critical mush Rayleigh 
number criterion is 

R m  > Rc(A,,,,s), (5.22) 

where (5.23) 

For fixed s corresponding to c,,, = cE for NH,Cl, R, and k,  (the critical wave-number) 
are functions of A,,,. The numerical results are shown in figures 5 and 6. 
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FIGURE 5. The critical Rayleigh number with varying superheat (solid curve). Worster’s (1992) 
theoretical result is shown by the dashed curve. In addition, experimental data (from Tait & Jaupart 
1992) for the onset of mush convection are displayed. 

A, 

FIGURE 6. The critical wavenumber with varying superheat (solid curve). Worster’s (1992) results 
are shown by the dashed curve. 

We calculate the value of the compositional flux G from the similarity solution (4.15) 
as 

(5.24) 

(Note that the neglect of the enhanced diffusion in (4.1 1) requires vG 4 1 .) Therefore 
G = G(a, t), and an appropriate time to evaluate this function is at the critical time t, 
for the onset of convection, given by 

(5.25) 

5-2 
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A, 

FIGURE 7. The variation of the compositional flux G with A ,  at the onset of convection. 

Using (4.16) to find a = a(A,), we plot G = G(A,) in figure 7. As A , +  co, G +  16.5 
since a + 0 and R, +. 6.03 (see below). 

Worster (1992) has determined a critical Rayleigh number for the onset of what he 
calls the 'mushy-layer mode' of instability. This corresponds to the initiation of 
convection in the mush from stagnant mush and liquid regions. We determine 
instability from a similarity solution which allows for the finger-like structure in the 
liquid region, whereas Worster perturbs about a basic steady state. however, it is 
interesting to compare our results. 

In figures 5 and 6 a comparison is made between our results and Worster's results 
shown in figure 11 and 12 of his paper. It can be seen that Re, k,  compare favourably 
with his critical Rayleigh number and wavenumber. The critical Rayleigh number R, 
in figure 5 tends to a constant as A ,  + co since to leading order the residual Y, given 
by (5.21), is independent of A,. This constant was evaluated numerically to be - 6.03. 
In their paper, Tait & Jaupart cite a value of 25 for the critical Rayleigh number in the 
mush for low superheat. However, their criterion for the onset of convection was the 
observation of porosity fluctuations in the mush. Thus we would expect a lower 
theoretical result. There is little variation of the wavenumber k, with A ,  shown in 
figure 6 (cf. Worster 1992, figure 11 a), and it is typically O(1). Thus the cells have a 
width on the order of the mushy layer thickness. This seems to concur with the 
observations by Tait & Jaupart of the chimney spacing in the mush. In figure 5 we have 
also plotted data from the experiments of Tait & Jaupart for the initiation of 
convection in the mush. It can be seen there is reasonable quantitative agreement with 
the theoretical results within the scatter of the data. 

6. Conclusions 
A much simplified model for alloy solidification has been presented, which is 

appropriate for the study of the onset of convection in the mushy region. By an 
elaborate scaling procedure we were able to parameterize the convection in the liquid 
region, and reduce the model still further. The net effect of these simplifications was 
that the model reduced to the porous-medium convection equations in the mush, and 
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a diffusion equation for temperature in the liquid. The linear stability of the equations 
was then analysed, and a Rayleigh-number criterion for the onset of convection in the 
mush was derived. The results obtained show reasonable quantitative agreement with 
previous theoretical and experimental work (Worster 1986, 1992; Tait & Jaupart 
1992). 

Experimental evidence (Chen & Chen 1991 ; Tait & Jaupart 1992) seems to support 
the idea that convection is usually initiated from a basic state in which the fluid in the 
liquid region has a rapidly convecting ' finger-like structure'. As a consequence, we 
have derived a similarity solution taking this structure into account, and used the 
solution as the basic time-dependent state. The similarity solution is similar to that 
given by Worster (1986) for initially quiescent mush and liquid regions. 

Once convection has been initiated in the mush we hypothesize that there is a further 
Rayleigh-number criterion for the onset of channel formation, which leads ultimately 
to the formation of freckles in the final solidified casting. The determination of this 
critical Rayleigh number is an area for future work, but it is hoped that the present 
work provides a foundation on which to build. Current research is aimed at solving the 
moving boundary problem (5.1)-(5.5) numerically, and comparing with the results 
presented herein. Examining the evolution of the mass fraction from this solution 
provides a means to calculate a criterion for the onset of channelling. Specifically, 
freckles are initiated at z L  if q5t < 0 there (from (3.6)), i.e. dcldt < 0, or equivalently, 
w > 2 , ;  that is, freckles are initiated when the fluid flow velocity exceeds that of 
the freezing isotherm, a condition well known to metallurgists (Flemings 1974). 

P. E. acknowledges an SERC earmarked studentship. We thank Grae Worster for 
providing the data in figures 4-6. 

Appendix A. Boundary-layer theory for the liquid region 
It will be convenient to introduce the stream function and vorticity defined by 

u = (- $z, $,), w = - V2$ respectively, for the rescaled governing equations of the 
liquid region given by (3.9), (3.10) and (3.12). They can be written (scaling T with e) 

1 
Le 

u * V T  = V'T, u * VC = -V'C. (A l b ,  C) 

In (A 1) we have supposed that the liquid 'sees' an effectively stationary liquid/mush 
interface. Hence we can redefine z so that z = 0 is now the position of this interface. 
To apply the boundary-layer theory of Roberts (1 979) we suppose that solute-rich 
plumes emerge from the mush at regular intervals of 2h where h - O( 1). Appropriate 
boundary conditions for (A 1) are then 

at x = 0,h 

a t z = O  

$ = $,, = c, = r, = 0, 

$=l jrZ=T=O,  
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FIGURE 8. The boundary layers in the convective cell. 

The boundary-layer theory we construct for the finger-like convection above the 
mush has a number of differences to previous models for salt fingers (Stern 1975; 
Schmitt 1979; Howard & Veronis 1987). These models attempt to describe the finger 
zone that forms between a layer of warm salty water above a layer of cool fresh water. 
Stern’s model assumes an array of fingers of infinite length, with the dependent 
variables sinusoidal in the horizontal coordinate, and independent of the vertical 
coordinate. This is probably an accurate description only in the middle of the finger 
zone. Schmitt (1 979) considered time-dependent solutions of Stern’s idealized model. 
He constructed a finite-depth model from fingers with the maximum growth rate, and 
found good agreement with experimental flux ratios. A different approach was adopted 
by Howard & Veronis (1987) who constructed a model specifically for fingers of finite 
depth. The horizontal scale of the fingers was taken to be the buoyancy-layer scale 
(Veronis 1987). The width of a finger was given by that which gave the maximum 
buoyancy flux. Each finger was supposed to have the salt concentration of the lower 
reservoir for an ascending finger, and of the upper reservoir for a descending finger. 
Eltayeb & Loper (1991) considered the different problem of a single rising salt finger 
in an attempt to describe the convective plumes that rise out of fully developed 
chimneys. Again, the horizontal scale of the plume was taken as the buoyancy-layer 
scale, the actual width of the plume being determined by the maximum buoyancy flux. 
The concentration in the plume was taken as a constant. 

A. 1, Determination of scales 
In what follows, we anticipate that thermal buoyancy is ‘small’, in a sense to be 
determined. We shall suppose that the convective cell has the following structure: at 
z = 0 there is a compositional boundary layer of thickness 6, at x = 0 there is a rising 
compositional plume of thickness a,, and x = h is a line of symmetry. The anticipated 
cell structure is shown in figure 8. In the compositional boundary layer convection thus 
balances diffusion. In the compositional plume a balance of convection with diffusion 
gives 

6; = 6 3 .  (A 3) 
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O I  
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FIGURE 9. The canonical core flow problem. 

Additionally a balance of vorticity diffusion with compositional buoyancy in (A 1) 
yields 

where [c] is the corn ositional scale in the plume, and we have assumed w - O(1). 
Finally we suppose P cd$ is advected around the corner x = z = 0, from which we 
again obtain (A 4), since $ - S2 and c N 1 in the basal boundary layer and $ N 6, in 
the plume. We thus obtain the following scales: 

1/s, = [c1/82, (A 4) 

[c] N d, 8, - &. (A 5 )  

62v2w = c, -k 4 T,, 

In terms of 6 (A 1) now become 

(A 6 4  

(A 6b,  4 

R 
s 

u * V T  = V2T, u * V C  = S3V2c, 

where we have introduced the buoyancy ratio R,, = RJR, = a, r/& In what follows 
we assume Rp is sufficiently small that thermal buoyancy can be neglected. This 
requires formally that R, < 1/Le. 

A.2. The core region 
Regular perturbation expansions in S for w ,  T, c yield c - 0 to all orders in the core. At 
leading order 

providing Rp is small enough. The boundary conditions are as in (A 2) except that, at 
x = 0, $,, is replaced by $, $,, = - C in order to match to the plume (see $A 3). We 
have solved this problem numerically using a modification of Roberts’ (1979) scheme. 
Here we first rescale 

V4$ = 0, (A 7) 

$ = (Ch3)i $, x = h2, (A 8) 

so that the canonical problem is that shown in figure 9. 
We approximate the infinite domain by taking an upper boundary 2 = 5.  The 
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FIGURE 10. The stream function $ in the core region. 

streamlines and vorticity in the cell are shown in figures 10 and 1 I with a 20 x 100 mesh. 
The calculated values of the stream function and vorticity compare well with the 
asymptotic relations as i+- co. These are given by 

(A 9) 

The velocity in the core can then be written in terms of the numerical solution by 

2 $ - -(a- 1)(2-2), 4 - d3(1-2). 
d 12 

u = (Ch)b4(x/h, z /h) .  

A.3. The compositional plume on x = 0 
The scales in the plume have been determined as 

$=$Y,  w - 1 ,  c = & @ ,  x=$x,  
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FIGURE 1 1 .  The vorticity & in the core region. 

where capital letters denote boundary-layer variables. Substituting into (A 6) we have 
to leading order 

with boundary conditions 

a t X = O  

as X+co 

Y = Y,, = @jx = 0, 

yx -f v’(z)\ from the core, 
W+Y(Z)J 

@j -f 0 to match to core, 

and an initial condition at z = 0. 
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FIGURE 12. The core temperature problem. 

Integrating (A 1 1  a,  c) yields 

w = y ( z ) - j I  @ dX where 1; @dX = y(z) ,  

Y = v,(z) X ,  

and in Von Mises coordinates ( A  1 1  b )  becomes 

(A 13a) 

( A  13b) 

@[ = QlvF, where 6 = v,(z’) dz‘. 1 
From this last relation we see that C = s: @ d Y  is a positive constant. Moreover 
matching to the core we require limx+,, $, = u,(z) and limz.o $,, = - y(z). Therefore 
- C = - v,(z) y (z )  = $, $xz is the modified boundary condition on x = 0. 

A.4. The compositional boundary layer on z = 0 
The scales in the compositional layer are 

$=8S”Y, w -  1 ,  c -  1 ,  z =  sz .  (A 15)  
Substituting into (A 6 )  we find to leading order 

wzz = cx, Yx cz - Yz c, = czz, 0 = - Yzz, (A 16a-c) 

with boundary conditions 

a t Z = O  

a s Z + m  
Y = yZ = 0, -ac/az = G, 

w --f w,(x) from core solution, 

(A 17a) 

(A 17b) 

c --f 0 to match to core. (A 17c) 

The reason for only requiring the average of cz to be prescribed is explained further in 
Appendix B. In Von Mises’ coordinates x, Y (A 16b) becomes 

and the problem is completed by an initial condition at x = h. 
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FIGURE 13. The numerical solution to the core temperature problem with G = 12.0, corresponding 
to the compositional flux at the critical Rayleigh number, when A ,  = 1.6. 

A.5. The temperature distribution in the core 

In fact there is no need for us to calculate the boundary-layer solutions since in the 
compositional layer (A 18) gives 

from which it follows that 

assuming that c dY is advected around the corners. Therefore the numerical solutions 
in the core gives 

u = Gihti(x/h, z /h) .  (A 21) 
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The vertical lengthscale has been scaled with 6 ,  so the appropriate boundary condition 
at infinity is given by the flux condition on z = 0. The core temperature problem is then 
as displayed in figure 12, and is discussed further in Appendix B. This problem has been 
solved numerically using the results calculated in figure 10, and a value of G = 12.0 
corresponding to the onset of convection in the mush at A ,  = 1.6 (figure 7) .  The 
solution is displayed in figure 13. To a good approximation, T is just linear, i.e. 
T = Gz. 

Appendix B. Homogenization of the temperature in the liquid 

equation is 
Written in terms of the length- and timescales in the mush, the liquid temperature 

(B 1 )  
1 +- U ( X / E )  * V T  = V2T,  
€ 

where u - O( 1 )  is the rescaled velocity field in the liquid, calculated in Appendix A. 
The boundary conditions are that 

T=O on z = z I ,  (B 2 4  

T+A, as z+m. (B 2b)  

In addition we have W / a n  1.; = -&/an l z L ,  which determines z I .  

putting 

(corresponding to the liquid scales introduced in §3.2), then 

The form of (B 1 )  suggests a multiple space (and time) scale solution. Specifically, 

t = C z t l ,  x = T = €e (B 3)  

(B 4) et, + u(x) . v X  e = v; e, 
i.e. (A lb)  of Appendix A. As indicated there, this inner solution must match a 
far-field outer solution in the liquid where the mush scales are relevant. Specifically, if 
u + (0, w ( x / € )  + v(x)) as z / €  + cc, this far-field problem is 

(B 5 )  

We now show how this equation can be solved using a multiple-scale approach. Put 

+ {( 1 /€) w(x/e)  + u(x)} T,  = V2T,  

and matching requires the same boundary conditions as in (B 2). 

x = e X ,  z = a ,  

T =  T(x , z ,X ,Z , t ) -  T,+sT,+?T,+ ..., 
and assume 

with each being periodic in X. We obtain the successive problems 

wo) = wT,,-(T,xx+ T,,,) = 0, 

wl) = - wToz + 2(T,,, + Tozz> -vT,z, 

w2) = - w L  + 2(T,,x + L Z )  - q z  + (V"-~T,, - Tot ) ,  

(B 8 4  

(B 8b) 

(B 8 4  

where V 2  = a2/ax2 + a2/i3z2. We can take w ( X )  as periodic of zero mean, specifically 
suppose 

(B 9) 
00 

w = C w, cos nX,  
1 
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and define V periodic with zero mean by 

v,, = - 
m 

w n  w, v =  C-cosnX. 
1 n2 

Then T, = T,(x, z ,  t)  (B 11) 

solves (B 8a), and T,=-T,,v (B 12) 

L(T,) = w VT,,, - 2T,,, v, + VZT, - T,, - vq,. (B 13) 

In order to obtain a solution periodic in X with zero mean and aT,/aZ-tO at 00, we 
require L(T,) = 0, where the overbar denotes the horizontal spatial average. With the 
stream function I++ defined by w = yk,, thus V, = --I,+, we have 

solves (B 8b), suppressing secular terms proportional to Z. Thus we find 

It follows that in order for the right-hand side of (B 13) to have zero mean in 
X ,  T = T, must satisfy the solvability condition 

The enhanced vertical diffusivity is entirely analogous to Taylor dispersion (Taylor 
1953). Using (A 8), (A 9) and (A 20) of Appendix A, we find that 

(B 16) 

(B 17) 

1 7  & = G v  

where G = aT/i3z(,t and the geometric factor v is given by 

v = h4/3 15. 

Thus in practice the enhancement is likely to be small. 
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